Electromagnet System for Testing Magnetron Types 2J21 / 725

25 Feb 10 by Vaughn P. McDowell

Part 3 2J21 & 725 Magnetron Electromagnet

Initially Designed an Electromagnet to operate the 2J21

Later

include the 725A Magnetron

CONCLUSION:

Seems to work great based on estimated amp-turns and required amps for pole separation, checking magnetron pulsed current and voltage verses the 725 performance curves (i.e. ~5500 gauss; 12KV at 12 AMPS) and the assumed 12KV at 10 AMPS for the 2J21; every thing seems to fit. I have been operating the electromagnet at about 2.65 AMPS.

This is my first time ever at constructing an electromagnet of this size and based it mainly on Reference 2 with modifications; replace 2" round steel stock with a 2 \mathfrak{M} inch form instead to allow for removable pole magnetron adapters. In operation the winding get very warm causing the coil resistance to increase; I decided to use a box fan cooling set up to minimize the operating voltage after warm up.

I am hoping to someday examine various coil forms to minimize the wire resistance and also examine various practical ways to help the thermal conductivity; to hopefully minimize the Joulean heat loss.

coils 1656 turns each #18 magnet wire

$$\frac{(0.55\text{Tesla})(0.01524\text{ meter})}{(0.83\text{ correction factor})(1.26\text{E-}6)} = 8014\text{ AMP TURNS}$$

From early calculations; correction factor was estimated

Poles for 2J21 magnetron (~1.2" gap)

rail holder

I checked the references below for refreshing my memory about MMF from my college days;

Ref 1EM Norberto raggio's ELECTROMAGNET DESIGN COOKBOOK;

http://www.reocities.com/CareCanaveral/2404/electro.html; http://soar.wichita.edu/dspace/bitstream/10057/1517/1/t07084.pdf

Ref 2EM "How to Build a Magneto Magnetizer" by Dave Gingery .. www.lindsavbks.com

Ref 3EM http://chestofbooks.com/The Electro magnet

Ref 4EM Electro-magnets.pdf "An introduction to Electromagnet Design" by M Kihara (June, 2000)

Ref 5EM Magnetic_Circuit_Design.pdf Magnetic Circuit Design

Ref 6EM Magnetic circuit - Wikipedia, the free encyclopedia.htm Magnetic circuit

Ref 7EM Section 4A.htm Magnetic Circuit Design: definition of the load line, by Dr. Peter Campbell

Ref 8EM Chapter 1 Magnetism -- Calculating the strength of a magnet.htm

Ref 9EM eet_ch4.pdf 48550 Electrical Energy Technology Chapter 4. Magnetic Circuit Analysis

Ref 10EM Magnetism quantities, units and relationships.htm

Decided to build an electromagnet for the 2J21 and 725A magnetrons; got photos of the permanent magnets in order to to get rough estimate of dimensions and physical outline; and adapt it to Ref 2

Decided to use 2" sheets stacked to get 2 X 2 sq inch core for the electromagnet winding; decided to use removable round stock magnetron pole pieces to the pole faces see above.

Using picture from MIT series "Microwave Receivers" pg 336, used a reference point and drew 1 st guess of the physical dimensions

Sketch out magnetic core rough physical shape

For poles for 2J21 magnetron (~1.2" gap) estimate Gauss 2500

Poles for 725A magnetron (~0.6" gap)

coils 1656 turns each #18 magnet wire

$$\frac{(0.55\text{Tesla})(0.01524\text{ meter})}{(0.83\text{ correction factor})(1.26\text{E}-6)}$$
 = 8014 AMP TURNS

From early calculations ; correction factor was estimated

electromagnet Rear View

Electromagnet Front View

Poles for 725A magnetron (~0.6" gap)

coils 1656 turns each #18 magnet wire

Magnetron Holder

Electromagnet Front View with rail plus magnetron holder

holder

holder mounts to rail

725A with pole pieces

